問題3.2.1
次の不定積分を求めよ。
(1)$\displaystyle \int \dfrac{x^2}{x^2-x-6} dx$
(2)$\displaystyle \int \dfrac{2}{(x-1)(x^2+1)} dx$
(3)$\displaystyle \int \dfrac{x-1}{(2-x)^3} dx$
(4)$\displaystyle \int \dfrac{2}{x(x-1)(x-2)} dx$
(5)$\displaystyle \int \dfrac{5x+3}{(x+1) (x-1)^2} dx$
(6)$\displaystyle \int \dfrac{2x}{(x-1)^2 (x^2+1)} dx$
《ポイント》
有理式の不定積分計算では部分分数分解が必要になることがあります。未定係数法を使えるようにきちんとマスターしましょう。
《解答例》
(1)
$\begin{align}& \ \ \ \ \ \displaystyle \int \dfrac{x^2}{x^2-x-6} dx \\
&=\displaystyle \int \left( \dfrac{x^2-x-6}{x^2-x-6}+\dfrac{x+6}{x^2-x-6}\right) dx \\
&=\displaystyle \int \left( 1+\dfrac{x+6}{(x-3)(x+2)} \right) dx \end{align}$
恒等式 $\dfrac{x+6}{(x-3)(x+2)}=\dfrac{a}{x-3}+\dfrac{b}{x+2}$ を解くと、$a=\dfrac{9}{5}$、$b=-\dfrac{4}{5}$ を得るから、
$\begin{align}&=\displaystyle \int \left( 1+\dfrac{9}{5} \cdot \dfrac{1}{x-3}-\dfrac{4}{5} \cdot \dfrac{1}{x+2} \right) dx \\
&=x+\dfrac{9}{5} \log |x-3|-\dfrac{4}{5} \log |x+2|+C \ \ \cdots \cdots \text{(答)} \end{align}$
(2)
$\displaystyle \int \dfrac{2}{(x-1)(x^2+1)} dx$
$\dfrac{2}{(x-1)(x^2+1)}=\dfrac{a}{x-1}+\dfrac{bx+c}{x^2+1}$ を解くと、$a=1$、$b=c=-1$を得るから、
$\begin{align}& \ \ \ \ \ \displaystyle \int \dfrac{2}{(x-1)(x^2+1)} dx \\
&=\displaystyle \int (\dfrac{1}{x-1}-\dfrac{x+1}{x^2+1} dx \\
&=\displaystyle \int \left( \dfrac{1}{x-1}-\dfrac{x}{x^2+1}-\dfrac{1}{x^2+1} \right) dx \\
&= \log |x-1|-\dfrac{1}{2} \log |x^2+1|- \tan ^{-1} x+C \ \ \cdots \cdots \text{(答)} \end{align}$
(3)
$\begin{align}& \ \ \ \ \ \displaystyle \int \dfrac{x-1}{(2-x)^3} dx \\
&=\displaystyle \int \left(-\dfrac{2-x}{(2-x)^3} +\dfrac{1}{(2-x)^3}\right) dx \\
&=\displaystyle \int \left( -\dfrac{1}{(2-x)^2} +\dfrac{1}{(2-x)^3} \right) dx \\
&=-\dfrac{1}{2-x}+\dfrac{1}{2(2-x)^2}+C \ \ \cdots \cdots \text{(答)} \end{align}$
(4)
$\displaystyle \int \dfrac{2}{x(x-1)(x-2)} dx$
$\dfrac{2}{x(x-1)(x-2)}=\dfrac{a}{x}+\dfrac{b}{x-1}+\dfrac{c}{x-2}$ を解くと、$a=1$、$b=-2$、$c=1$を得るから、
$\begin{align}& \ \ \ \ \ \displaystyle \int \dfrac{2}{x(x-1)(x-2)} dx=\displaystyle \int \left(\dfrac{1}{x}-\dfrac{2}{x-1}+\dfrac{1}{x-2}\right) dx \\
&=\log |x|-2 \log |x-1|+ \log |x-2|+C \ \ \cdots \cdots \text{(答)} \end{align}$
$\left( = \log \left| \dfrac{x(x-2)}{(x-1)^2} \right| +C \right)$
(5)
$\displaystyle \int \dfrac{5x+3}{(x+1) (x-1)^2} dx$
$\dfrac{5x+3}{(x+1) (x-1)^2}=\dfrac{a}{x+1}+\dfrac{b(x-1)+c}{(x-1)^2}$ を解くと、$a=-\dfrac{1}{2}$、$b=\dfrac{1}{2}$、$c=4$を得るから、
$\begin{align}& \ \ \ \ \ \displaystyle \int \dfrac{5x+3}{(x+1) (x-1)^2} dx \\
&=\displaystyle \int \left(\dfrac{-1}{2(x+1)}+\dfrac{1}{2(x-1)} +\dfrac{4}{(x-1)^2}\right) dx \\
&=-\dfrac{1}{2} \log |x+1|+\dfrac{1}{2} \log |x-1|-\dfrac{4}{x-1}+C \ \ \cdots \cdots \text{(答)} \end{align}$
$\left( =\dfrac{1}{2} \log \left| \dfrac{x-1}{x+1} \right| -\dfrac{4}{x-1}+C \right)$
(6)
$\displaystyle \int \dfrac{2x}{(x-1)^2 (x^2+1)} dx$
$\dfrac{2x}{(x-1)^2 (x^2+1)}=\dfrac{b(x-1)+c}{(x-1)^2}+\dfrac{a}{x^2+1}$ を解くと、$a=-1$、$b=0$、$c=1$を得るから、
$\begin{align}& \ \ \ \ \ \displaystyle \int \dfrac{2x}{(x-1)^2 (x^2+1)} dx \\
&=\displaystyle \int \left( \dfrac{1}{(x-1)^2} -\dfrac{1}{x^2+1} \right) dx \\
&=-\dfrac{1}{x-1}- \tan ^{-1} x+C \ \ \cdots \cdots \text{(答)} \end{align}$
復習例題未設定