微積4.2.6

前に戻る トップへ戻る 次の問題へ

問題4.2.6

x=ucosαvsinαy=usinα+vcosαaは定数)とするとき、z=f(x,y) に対して、次の等式を示せ。zx2+zy2=zu2+zv2

 

《ポイント》

zuzvを連鎖律(チェインルール)により偏微分できれば、あとは単純計算するだけです。チェインルールについて確認したい人は教科書の定理4.2.5を参照してください。チェインルールは今後の積分計算の変数変換で重要となるヤコビアンとも関係しています。

 


 

《解答例》

zu=zxxu+zyyu=zxcosα+zysinα zv=zxxv+zyyv=zxsinα+zycosαより、    zu2+zv2=(zxcosα+zysinα)2+(zxsinα+zycosα)2=zx2(cos2α+sin2α)+zy2(cos2α+sin2α)=zx2+zy2が成り立つ。よって示された。

 


 

復習例題は設定していません。

 


前に戻る トップへ戻る 次の問題へ