問題5.1.2a
積分を計算せよ。
(1)$\displaystyle \iint_{D} \sin(2x+y)\ dxdy$ $D:0 \leqq x \leqq \dfrac{\pi}{2}$、$0 \leqq y \leqq \dfrac{\pi}{2}$
(2)$\displaystyle \iint_{D} (x^2y+y^2)\ dxdy$ $D:1 \leqq x \leqq 2$、$2 \leqq y \leqq 3$
(3)$\displaystyle \iint_{D} x\ dxdy$ $D:x^2+y^2 \leqq 1$、$x \geqq 0$
(4)$\displaystyle \iint_{D} \sqrt{a^2-y^2}\ dxdy$ $D:x^2+y^2 \leqq a^2$
《ポイント》
累次積分の計算練習です。
《解答例》
(1)$\displaystyle \iint_{D} \sin(2x+y)\ dxdy$ $D:0 \leqq x \leqq \dfrac{\pi}{2}$、$0 \leqq y \leqq \dfrac{\pi}{2}$
$\begin{align}&\ \ \ \ \displaystyle \iint_{D} \sin(2x+y)\ dxdy \\ &=\displaystyle \int^{\frac{\pi}{2}}_{0}\big[-\cos (2x+y) \ \big]^{\frac{\pi}{2}}_{0}\ dx \\ &=\displaystyle \int^{\frac{\pi}{2}}_{0}\left\{-\cos\left(2x+\dfrac{\pi}{2}\right)+\cos 2x\right\}\ dx \\ &=\displaystyle \int^{\frac{\pi}{2}}_{0}(\sin 2x+\cos 2x)\ dx \\ &=\left[-\dfrac{1}{2}\cos 2x+\dfrac{1}{2}\sin 2x\right]^{\frac{\pi}{2}}_{0} \\ &=-\dfrac{1}{2}(-1-1)+\dfrac{1}{2}(0-0) \\ &=1 \ \ \cdots \cdots \text{(答)}\end{align}$
(2)$\displaystyle \iint_{D} (x^2y+y^2)\ dxdy$ $D:1 \leqq x \leqq 2$、$2 \leqq y \leqq 3$
$\begin{align}&\ \ \ \ \displaystyle \iint_{D} (x^2y+y^2)\ dxdy \\ &=\displaystyle \int^{3}_{2}\left[\frac{1}{3}x^3 y+xy^2 \ \right]^{2}_{1}\ dy \\ &=\displaystyle \int^{3}_{2}\left(\frac{7}{3} y+y^2\right)\ dy \\ &=\left[\frac{7}{6} y^2+\frac{1}{3}y^3\right]^{3}_{2} \\ &=\dfrac{7}{6}(63-28)+\dfrac{1}{3}(27-8) \\ &=\dfrac{73}{6} \ \ \cdots \cdots \text{(答)}\end{align}$
《別解:先に$y$で積分した場合》
$\begin{align}&\ \ \ \ \displaystyle \iint_{D} (x^2y+y^2)\ dxdy \\ &=\displaystyle \int^{2}_{1}\left[\frac{1}{2}x^2 y^2+\frac{1}{3}y^3 \ \right]^{3}_{2}\ dx \\ &=\displaystyle \int^{2}_{1}\left(\frac{5}{2}x^2+\frac{19}{3}\right)\ dx \\ &=\left[\frac{5}{6} x^3+\frac{19}{3}x\right]^{2}_{1} \\ &=\dfrac{5}{6}(8-1)+\dfrac{19}{3}(2-1) \\ &=\dfrac{73}{6} \ \ \cdots \cdots \text{(答)}\end{align}$
(3)$\displaystyle \iint_{D} x\ dxdy$ $D:x^2+y^2 \leqq 1$、$x \geqq 0$
$x$の範囲は $0 \leqq x \leqq \sqrt{1-y^2}$ であるから、
$\begin{align}&\ \ \ \ \displaystyle \iint_{D} x\ dxdy \\ &=\displaystyle \int^{1}_{-1}dy\int^{\sqrt{1-y^2}}_{0}x\ dx \\ &=\displaystyle \int^{1}_{-1}\left[\dfrac{1}{2}x^2\right]^{\sqrt{1-y^2}}_{0}dy \\ &=\displaystyle \dfrac{1}{2}\int^{1}_{-1}(1-y^2)\ dy \\ &=\dfrac{1}{2}\left[y-\frac{1}{3}y^3\right]^{1}_{-1} \\ &=\left[y-\frac{1}{3}y^3\right]^{1}_{0} \\ &=\dfrac{2}{3} \ \ \cdots \cdots \text{(答)}\end{align}$
(4)$\displaystyle \iint_{D} \sqrt{a^2-y^2}\ dxdy$ $D:x^2+y^2 \leqq a^2$
$-\sqrt{a^2-y^2} \leqq x \leqq \sqrt{a^2-y^2}$、$-a \leqq y \leqq a$ より、
$\begin{align}&\ \ \ \ \displaystyle \iint_{D} \sqrt{a^2-y^2}\ dxdy \\ &=\displaystyle \int^{a}_{-a}\left[x\sqrt{a^2-y^2} \ \right]^{\sqrt{a^2-y^2}}_{-\sqrt{a^2-y^2}}\ dy \\ &=\displaystyle \int^{a}_{-a}2(a^2-y^2)\ dy \\ &=4\displaystyle \int^{a}_{0}(a^2-y^2)\ dy \\ &=4\left[a^2 y-\dfrac{1}{3}y^3\right]^{a}_{0} \\ &=\dfrac{8}{3}a^3 \ \ \cdots \cdots \text{(答)}\end{align}$
※積分計算の途中で偶関数の性質を利用しています。
復習例題は設定していません。