問題3.2.2a
次の行列式の値を求めよ。
(1)$\left|\begin{array}{rrr}0 & 0 & 4 \\ 0 & -5 & 7 \\ 3 & 2 & 1\end{array}\right|$
(2)$\left|\begin{array}{rrr}2 & 3 & 5 \\ 8 & 13 & -1 \\ 6 & -9 & 6\end{array}\right|$
(3)$\left|\begin{array}{rrr}12 & 16 & 32 \\ -6 & 13 & 4 \\ 15 & 10 & -20\end{array}\right|$
(4)$\left|\begin{array}{rrrr}2 & -4 & -5 & 3 \\ -6 & 13 & 14 & 1 \\ 1 & -2 & -2 & -8 \\ 2 & -5 & 0 & 5\end{array}\right|$
ポイント
行列式の値はサラスの方法で求めても良いのですが、計算が煩雑です。簡約化して上三角行列に整理することで行列式を計算しやすくする工夫をしましょう。
解答例
(1)
$$\begin{aligned}
\left|\begin{array}{ccc}
0 & 0 & 4 \\
0 & -5 & 7 \\
3 & 2 & 1
\end{array}\right| &=-\left|\begin{array}{ccc}
3 & 2 & 1 \\
0 & -5 & 7 \\
0 & 0 & 4
\end{array}\right| \\
&=-3 \cdot(-5) \cdot 4 \\
&=60 \quad \cdots (\text{答})
\end{aligned}$$
(2)
$$\begin{aligned}
& \quad \left|\begin{array}{ccc}
2 & 3 & 5 \\
8 & 13 & -1 \\
6 & -9 & 6
\end{array}\right| \\
&=\left|\begin{array}{ccc}
2 & 3 & 5 \\
0 & 1 & -21 \\
0 & -18 & -9
\end{array}\right| \begin{array}{l}
\\
②+① \times (-4) \\
③+① \times (-3)
\end{array} \\
&=\left|\begin{array}{ccc}
2 & 3 & 5 \\
0 & 1 & -21 \\
0 & 0 & -387
\end{array}\right| \begin{array}{l}
\\
\\
③+② \times 18
\end{array} \\
&=2 \cdot 1 \cdot(-387) \\
&=-774 \quad \cdots (\text{答})
\end{aligned}$$
(3)
$$\begin{aligned}
& \quad \left|\begin{array}{ccc}
12 & 16 & 32 \\
-6 & 13 & 4 \\
15 & 10 & -20
\end{array}\right| \\
&=4 \cdot 5\left|\begin{array}{ccc}
3 & 4 & 8 \\
-6 & 13 & 4 \\
3 & 2 & -4 \end{array}\right| \\
&=20\left|\begin{array}{ccc}
3 & 4 & 8 \\
0 & 21 & 20 \\
0 & -2 & -12
\end{array}\right| \begin{array}{l}
\\
②+① \times 2 \\
③+① \times (-1)
\end{array} \\
&=20\left|\begin{array}{ccc}
3 & 4 & 8 \\
0 & 1 & 6 \\
0 & 21 & 20
\end{array}\right| \\
&=40\left|\begin{array}{ccc}
3 & 4 & 8 \\
0 & 1 & 6 \\
0 & 0 & -106
\end{array}\right| \begin{array}{l}
\\
\\
③+② \times (-21)
\end{array} \\
&=40 \cdot 3 \cdot 1 \cdot(-106) \\
&=-12720 \quad \cdots (\text{答})
\end{aligned}$$
(4)
$$\begin{aligned}
& \quad \, \, \left|\begin{array}{cccc}
2 & -4 & -5 & 3 \\
-6 & 13 & 14 & 1 \\
1 & -2 & -2 & -8 \\
2 & -5 & 0 & 5
\end{array}\right| \\
&=\left|\begin{array}{cccc}
1 & -2 & -2 & -8 \\
2 & -5 & 0 & 5 \\
2 & -4 & -5 & 3 \\
-6 & 13 & 14 & 1
\end{array}\right| \\
&=\left|\begin{array}{cccc}
1 & -2 & -2 & -8 \\
0 & -1 & 4 & 21 \\
0 & 0 & -1 & 19 \\
0 & 1 & 2 & -47
\end{array}\right| \begin{array}{l}
\\
②+① \times (-2) \\
③+① \times (-2) \\
④+① \times 6
\end{array} \\
&=\left|\begin{array}{cccc}
1 & -2 & -2 & -8 \\
0 & -1 & 4 & 21 \\
0 & 0 & -1 & 19 \\
0 & 0 & 6 & -26
\end{array}\right| \begin{array}{l}
\\
\\
\\
④+②
\end{array} \\
&=\left|\begin{array}{cccc}
1 & -2 & -2 & -8 \\
0 & -1 & 4 & 21 \\
0 & 0 & -1 & 19 \\
0 & 0 & 0 & 88
\end{array}\right| \begin{array}{l}
\\
\\
\\
④+③ \times 6
\end{array} \\
&=1 \cdot(-1) \cdot(-1) \cdot 88 \\
&=88 \quad \cdots (\text{答})
\end{aligned}$$