問題3.2.2b
次の行列式の値を求めよ。
(5)$\left|\begin{array}{rrrr}0 & -3 & -6 & 15 \\ -2 & 5 & 14 & 4 \\ 1 & -3 & -2 & 5 \\ 15 & 10 & 10 & -5\end{array}\right|$
(6)$\left|\begin{array}{lcc}1 / 4 & 1 / 6 & 2 / 3 \\ 1 / 12 & 1 / 6 & 1 / 4 \\ 1 / 4 & 0 & 1 / 6\end{array}\right|$
ポイント
行列式の値はサラスの方法で求めても良いのですが、計算が煩雑です。簡約化して上三角行列に整理することで行列式を計算しやすくする工夫をしましょう。
解答例
(5)
$$\begin{aligned}
& \quad \,\, \left|\begin{array}{cccc}
0 & -3 & -6 & 15 \\
-2 & 5 & 14 & 4 \\
1 & -3 & -2 & 5 \\
15 & 10 & 10 & -5
\end{array}\right| \\
&=15\left|\begin{array}{cccc}
0 & -1 & -2 & 5 \\
-2 & 5 & 14 & 4 \\
1 & -3 & -2 & 5 \\
3 & 2 & 2 & -1
\end{array}\right| \\
&=-15\left|\begin{array}{cccc}
1 & -3 & -2 & 5 \\
-2 & 5 & 14 & 4 \\
0 & -1 & -2 & 5 \\
3 & 2 & 2 & -1 \\
\end{array}\right| \\
&=15\left|\begin{array}{cccc}
1 & -3 & -2 & 5 \\
0 & -1 & 10 & 14 \\
0 & -1 & -2 & 5 \\
0 & 11 & 8 & -16
\end{array}\right| \begin{array}{l}
\\
②+① \times 2 \\
\\
④+① \times (-3)
\end{array} \\
&=-15\left|\begin{array}{cccc}
1 & -3 & -2 & 5 \\
0 & -1 & 10 & 14 \\
0 & 0 & -12 & -9 \\
0 & 0 & 118 & 138 \\
\end{array}\right| \begin{array}{l}
\\
\\
③+② \times (-1) \\
④+② \times 11
\end{array} \\
&=15\left|\begin{array}{cccc}
1 & -3 & -2 & 5 \\
0 & -1 & 10 & 14 \\
0 & 0 & -4 & -3 \\
0 & 0 & 59 & 69
\end{array}\right| \\
&=90\left|\begin{array}{cccc}
1 & -3 & -2 & 5 \\
0 & -1 & 10 & 14 \\
0 & 0 & -4 & -3 \\
0 & 0 & 0 & \dfrac{99}{4}
\end{array}\right| \begin{array}{l}
\\
\\
\\
④+③ \times \dfrac{59}{4}
\end{array} \\
&=-90 \cdot(-1) \cdot(-4) \cdot \dfrac{99}{4} \\
&=-8910 \quad \cdots (\text{答})
\end{aligned}$$
(6)
$$\begin{aligned}
& \quad \,\, \left|\begin{array}{lcc}1 / 4 & 1 / 6 & 2 / 3 \\ 1 / 12 & 1 / 6 & 1 / 4 \\ 1 / 4 & 0 & 1 / 6\end{array}\right| \\
&=\left(\frac{1}{12}\right)^{3}\left|\begin{array}{lll}
3 & 2 & 8 \\
1 & 2 & 3 \\
3 & 0 & 2
\end{array}\right|\\
&=-\frac{1}{1728}\left|\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 8 \\
3 & 0 & 2
\end{array}\right|\\
&=-\frac{1}{1728}\left|\begin{array}{ccc}
1 & 2 & 3 \\
0 & -4 & -1 \\
0 & -6 & -7
\end{array}\right| \begin{array}{l}
\\
②+① \times (-3) \\
③+① \times (-3)
\end{array} \\
&=-\frac{1}{1728}\left|\begin{array}{ccc}
1 & 2 & 3 \\
0 & -4 & -1 \\
0 & 0 & -\dfrac{1}{2}
\end{array}\right| \begin{array}{l}
\\
\\
③+② \times \left(-\dfrac{3}{2}\right)
\end{array} \\
&=-\frac{1}{1728} \cdot(-4) \cdot\left(-\dfrac{11}{2}\right)\\
&=-\frac{11}{864} \quad \cdots (\text{答})
\end{aligned}$$