問題3.2.2c
次の行列式の値を求めよ。
(7)$\left|\begin{array}{rrr}99 & 100 & 101 \\ 100 & 99 & 100 \\ 101 & 101 & 99\end{array}\right|$
(8)$\left|\begin{array}{ccccc}
0 & 0 & 0 & 0 & 3 \\
0 & 2 & 0 & 0 & 5 \\
0 & 13 & -2 & 0 & -4 \\
0 & -6 & 1 & 2 & 2 \\
8 & 1 & 2 & 3 & 4
\end{array}\right|$
ポイント
行列式の値はサラスの方法で求めても良いのですが、計算が煩雑です。簡約化して上三角行列に整理することで行列式を計算しやすくする工夫をしましょう。
解答例
(7)
$$\begin{aligned}
& \quad \,\,\left|\begin{array}{ccc}
99 & 100 & 101 \\
100 & 99 & 100 \\
101 & 101 & 99
\end{array}\right| \\
&=\left|\begin{array}{ccc}
101 & 101 & 99 \\
99 & 100 & 101 \\
100 & 99 & 100
\end{array}\right| \\
&=\left|\begin{array}{ccc}
1 & 2 & -1 \\
-1 & 1 & 1 \\
100 & 99 & 100
\end{array}\right| \begin{array}{l}
①+③ \times (-1) \\
②+③ \times (-1) \\
\text{ }
\end{array} \\
&=\left|\begin{array}{ccc}1 & 2 & -1 \\ 0 & 3 & 0 \\ 100 & 99 & 100\end{array}\right| \begin{array}{l}
\\
②+① \\
\text{ }
\end{array} \\
&=\left|\begin{array}{ccc}1 & 0 & -1 \\ 0 & 3 & 0 \\ 100 & 0 & 100\end{array}\right| \begin{array}{l}
①+② \times (-2/3) \\
\\
③+② \times (-33)
\end{array} \\
&=\left|\begin{array}{ccc}1 & 0 & -1 \\ 0 & 3 & 0 \\ 0 & 0 & 200\end{array}\right| \begin{array}{l}
\\
\\
③+① \times (-100)
\end{array} \\
&= 1 \cdot 3 \cdot 200 \\
&= 600 \quad \cdots (\text{答})
\end{aligned}$$
(8)
$$\begin{aligned}
& \quad \,\, \left|\begin{array}{ccccc}
0 & 0 & 0 & 0 & 3 \\
0 & 2 & 0 & 0 & 5 \\
0 & 13 & -2 & 0 & -4 \\
0 & -6 & 1 & 2 & 2 \\
8 & 1 & 2 & 3 & 4
\end{array}\right| \\
&=\left|\begin{array}{ccccc}
0 & 0 & 0 & 0 & 3 \\
0 & 2 & 0 & 0 & 0 \\
0 & 13 & -2 & 0 & -4 \\
0 & -6 & 1 & 2 & 2 \\
8 & 1 & 2 & 3 & 4
\end{array}\right| \begin{array}{l}
\\
②+① \times (-5/3) \\
③+① \times 4/3 \\
④+① \times (-2/3) \\
⑤+① \times (-4/3)
\end{array} \\
&=\left|\begin{array}{ccccc}
0 & 0 & 0 & 0 & 3 \\
0 & 2 & 0 & 0 & 0 \\
0 & 0 & -2 & 0 & 0 \\
0 & 0 & 1 & 2 & 0 \\
8 & 0 & 2 & 3 & 0
\end{array}\right| \begin{array}{l}
\\
\\
③+② \times (-13/2) \\
④+② \times 3 \\
⑤+② \times (-1/2)
\end{array} \\
&=\left|\begin{array}{ccccc}
0 & 0 & 0 & 0 & 3 \\
0 & 2 & 0 & 0 & 0 \\
0 & 0 & -2 & 0 & 0 \\
0 & 0 & 0 & 2 & 0 \\
8 & 0 & 0 & 3 & 0
\end{array}\right| \begin{array}{l}
\\
\\
\\
④+③ \times 1/2 \\
⑤+③
\end{array} \\
&=-\left|\begin{array}{ccccc}
8 & 0 & 0 & 3 & 0 \\
0 & 2 & 0 & 0 & 0 \\
0 & 0 & -2 & 0 & 0 \\
0 & 0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 3
\end{array}\right| \\
&=-8 \cdot 2 \cdot (-2) \cdot 2 \cdot 3 \\
&=192 \quad \cdots (\text{答})
\end{aligned}$$