問題3.5.1
次の行列式の値を求めよ。
(1)$\left|\begin{array}{llll}1 & 1 & 1 & 1 \\ 3 & 2 & 5 & 7 \\ 3^{2} & 2^{2} & 5^{2} & 7^{2} \\ 3^{3} & 2^{3} & 5^{3} & 7^{3}\end{array}\right|$
(2)$\left|\begin{array}{llll}3 & 2^{2} & 1 & 1 \\ 3^{2} & 2^{3} & 1 & 7 \\ 3^{3} & 2^{4} & 1 & 7^{2} \\ 3^{4} & 2^{5} & 1 & 7^{3}\end{array}\right|$
(3)$\left|\begin{array}{rrrr}2^{3} & 1 & 2^{2} & 2 \\ -3^{3} & 1 & 3^{2} & -3 \\ 7^{3} & 1 & 7^{2} & 7 \\ 5^{3} & 1 & 5^{2} & 5\end{array}\right|$
(4)$\left|\begin{array}{cccc}1 & 4 & 4^{3} & 4^{2} \\ 2^{2} & 2^{3} & 2^{5} & 2^{4} \\ 1 & 1 & 1 & 1 \\ 2 & -2^{2} & -2^{4} & 2^{3}\end{array}\right|$
ポイント
ヴァンデルモンドの行列式を利用します。$$\begin{aligned}
& \quad \,\, \left|\begin{array}{cccc}1 & 1 & \cdots & 1 \\ x_{1} & x_{2} & \cdots & x_{n} \\ x_{1}^{2} & x_{2}^{2} & \cdots & x_{n}^{2} \\ \vdots & \vdots & & \vdots \\ x_{1}^{n-1} & x_{2}^{n-1} & \cdots & x_{n}^{n-1}\end{array}\right| \\
&=\prod_{1 \leqq i<j \leqq n}\left(x_{j}-x_{i}\right) \\
&=(-1)^{n(n-1) / 2} \prod_{1 \leqq i<j \leqq n}\left(x_{i}-x_{j}\right) \end{aligned}$$このような形の行列に変形できれば行列式の計算が簡単になります。
解答例
(1)
$$\begin{aligned}
& \quad \,\, \left|\begin{array}{llll}1 & 1 & 1 & 1 \\ 3 & 2 & 5 & 7 \\ 3^{2} & 2^{2} & 5^{2} & 7^{2} \\ 3^{3} & 2^{3} & 5^{3} & 7^{3}\end{array}\right| \\
&=(7-5)(7-2)(7-3)(5-2)(5-3)(2-3) \\
&=-240 \quad \cdots (\text{答})
\end{aligned}$$
(2)
$$\begin{aligned}
& \quad \,\, \left|\begin{array}{llll}3 & 2^{2} & 1 & 1 \\ 3^{2} & 2^{3} & 1 & 7 \\ 3^{3} & 2^{4} & 1 & 7^{2} \\ 3^{4} & 2^{5} & 1 & 7^{3}\end{array}\right| \\
&=3 \cdot 2^{2}\left|\begin{array}{cccc}1 & 1 & 1 & 1 \\ 3 & 2 & 1 & 7 \\ 3^{2} & 2^{2} & 1^{2} & 7^{2} \\ 3^{3} & 2^{3} & 1^{3} & 7^{3}\end{array}\right| \\ = & 12(7-1)(7-2)(7-3)(1-2)(1-3)(2-3) \\
&= -2880 \quad \cdots (\text{答})
\end{aligned}$$
(3)
$$\begin{array}{l}
& \quad \, \left|\begin{array}{rrrr}2^{3} & 1 & 2^{2} & 2 \\ -3^{3} & 1 & 3^{2} & -3 \\ 7^{3} & 1 & 7^{2} & 7 \\ 5^{3} & 1 & 5^{2} & 5\end{array}\right| \\
&=\left|\begin{array}{cccc}1 & 2 & 2^{2} & 2^{3} \\ 1 & -3 & (-3)^{2} & (-3)^{3} \\ 1 & 7 & 7^{2} & 7^{3} \\ 1 & 5 & 5^{2} & 5^{3}\end{array}\right| \\
&=\left|\begin{array}{cccc}
1 & 1 & 1 & 1 \\
2 & -3 & 7 & 5 \\
2^{2} & (-3)^{2} & 7^{2} & 5^{2} \\
2^{3} & (-3)^{3} & 7^{3} & 5^{3}
\end{array}\right| \\
&= (5-7)(5+3)(5-2)(7+3)(7-2)(-3-2) \\
&= 12000 \quad \cdots (\text{答})\end{array}$$
(4)
$$\begin{array}{l}
& \quad \,\, \left|\begin{array}{cccc}1 & 4 & 4^{3} & 4^{2} \\ 2^{2} & 2^{3} & 2^{5} & 2^{4} \\ 1 & 1 & 1 & 1 \\ 2 & -2^{2} & -2^{4} & 2^{3}\end{array}\right| \\
&=2^{2} \cdot 2\left|\begin{array}{cccc|c}1 & 4 & 4^{3} & 4^{2} \\ 1 & 2 & 2^{3} & 2^{2} \\ 1 & 1 & 1^{3} & 1^{2} \\ 1 & -2 & (-2)^{3} & (-2)^{2}\end{array}\right| \\
&= -8\left|\begin{array}{ccc}1 & 4 & 4^{2} & 4^{3} \\ 1 & 2 & 2^{2} & 2^{3} \\ 1 & 1 & 1^{2} & 1^{3} \\ 1 & -2 & (-2)^{2} & (-2)^{3}\end{array}\right| \\
&= -8\left|\begin{array}{cccc}1 & 1 & 1 & 1 \\ 4 & 2 & 1 & -2 \\ 4^{3} & 2^{2} & 1^{2} & (-2)^{2} \\ 4^{3} & 2^{3} & 1^{3} & (-2)^{3}\end{array}\right| \\
&=-8(-2-1)(-2-2)(-2-4)(1-2)(1-4)(2-4) \\
&= -3456 \quad \cdots (\text{答})\end{array}$$