x^n/(x^4+1)の積分

戻る

不定積分 xnx4+1dx の結果をまとめています。

 n0 の場合

(※atanは正接(タンジェント)の逆関数)

1x4+1dx =2log(x22x+1)8+2log(x2+2x+1)8 +2atan(2x1)4+2atan(2x+1)4+C

xx4+1dx =atan(x2)2+C

x2x4+1dx =2log(x22x+1)82log(x2+2x+1)8 +2atan(2x1)4+2atan(2x+1)4+C

x3x4+1dx =log(x4+1)4+C

x4x4+1dx =x+2log(x22x+1)82log(x2+2x+1)8 2atan(2x1)42atan(2x+1)4+C

x5x4+1dx =x22atan(x2)2+C

x6x4+1dx =x332log(x22x+1)8+2log(x2+2x+1)8 2atan(2x1)42atan(2x+1)4+C

x7x4+1dx =x44log(x4+1)4+C

x8x4+1dx =x55x2log(x22x+1)8+2log(x2+2x+1)8 +2atan(2x1)4+2atan(2x+1)4+C

x9x4+1dx =x66x22+atan(x2)2+C

x10x4+1dx =x77x33+2log(x22x+1)82log(x2+2x+1)8 +2atan(2x1)4+2atan(2x+1)4+C

 

 n<0 の場合

1x(x4+1)dx =log(x)log(x4+1)4+C

1x2(x4+1)dx =2log(x22x+1)8+2log(x2+2x+1)8 2atan(2x1)42atan(2x+1)41x+C

1x3(x4+1)dx =atan(x2)212x2+C

1x4(x4+1)dx =2log(x22x+1)82log(x2+2x+1)8 2atan(2x1)42atan(2x+1)413x3+C

1x5(x4+1)dx =log(x)+log(x4+1)414x4+C

1x6(x4+1)dx =2log(x22x+1)82log(x2+2x+1)8 +2atan(2x1)4+2atan(2x+1)4+5x415x5+C

1x7(x4+1)dx =atan(x2)2+3x416x6+C

1x8(x4+1)dx =2log(x22x+1)8+2log(x2+2x+1)8 +2atan(2x1)4+2atan(2x+1)4+7x4321x7+C

1x9(x4+1)dx =log(x)log(x4+1)4+2x418x8+C

1x10(x4+1)dx =2log(x22x+1)8+2log(x2+2x+1)8 2atan(2x1)42atan(2x+1)445x89x4+545x9+C

 


戻る