今年の阪大数学は昨年までの難化の反動なのか、解答の方針に悩むような出題がほとんど無く、全体的に易化しました(特に文系数学が顕著です)。理系数学には複素数絡みの確率の問題があった一方、整数問題の出題はありませんでした。問題を見る限り高得点を獲得した受験生は多いと予想され、数学ではあまり差が付かなかったものと思われます。
今回は平面図形と離散数学の融合題である第3問を取り上げてみます。
あなたの知識の整理をお手伝いします!
今年の阪大数学は昨年までの難化の反動なのか、解答の方針に悩むような出題がほとんど無く、全体的に易化しました(特に文系数学が顕著です)。理系数学には複素数絡みの確率の問題があった一方、整数問題の出題はありませんでした。問題を見る限り高得点を獲得した受験生は多いと予想され、数学ではあまり差が付かなかったものと思われます。
今回は平面図形と離散数学の融合題である第3問を取り上げてみます。