世の中には「有名問題」として知られている問題が多数存在し、良くも悪くもその分野の代表例として紹介されます。例えば「$\sqrt{2}$が無理数であることを示せ」などといった証明問題は数ある有名問題の中でもその代表格ですね。この記事では整数分野の有名問題の中でもやや悪質(?)なものをちょっぴりご紹介します(笑)。
創作整数問題#6解法&創作整数問題#7
こんにちは、pencilです。問題#6は記数法を題材としていますが、そもそも記数法とは何なのかが分からなければ門前払いを食らいます。その辺も少し解説します。
創作整数問題#5解法&創作整数問題#6
こんにちは、pencilです。世の中には「マスターデーモン」というおどろおどろしい名の付く問題(1990年IMO中国大会(北京)の第3問)が存在し、数学愛好家や数オリ関係者の間で知名度が高い(?)問題です。前回の問題は若干その問題に似ていますが、素数という条件が強い制約になっており比較的簡単に解くことができます。
創作整数問題#4解法&創作整数問題#5
こんにちはpencilです。行く1月、逃げる2月、去る3月とは言いますが、今年の3月も残すところ1週間程となってしまいましたね。さて、前回の問題#4は数列の余りの周期性に気付くことができれば易問だったと思います。問題#5は(一応)ディオファントス方程式の問題にしてみました。楽しいですよ~(笑)
微分積分学と物理学①
古来、数学とは目的であると同時に手段でもあった。数学を美しいと感じるか否かはさておき、太古から人々の生活に欠かせない実学であったことは事実である。数えられる数という体系に始まる数論、長さや高さ、広さといった量を測るための図形的な研究から生まれた幾何学が創始され、数式という概念を高度に発達させて誕生した代数学からは後の微分積分学が成立する。現代における数学教育とはこうした過去の遺産の追認であり追体験であることは前頁の記事で触れられている通りである。
今回は数学以外の学問との関わりという観点から数学という世界の一端を覗いてみよう。 “微分積分学と物理学①” の続きを読む
微分積分学の歴史
こんにちは。pencilです。今日は微分積分学の歴史についてご紹介します。
微分積分を指す「ビセキ」という言葉は、高校生以上の年齢の方には随分と馴染み深い言葉でしょう。この「ビセキ」の概念を高校生が学べるようになるまでに費やされた先人の苦労を忍び、それが如何にスゴイことなのかを理解するため、微分積分学の歴史的経緯について簡単に振り返ってみましょう。 “微分積分学の歴史” の続きを読む
創作整数問題#3解法&創作整数問題#4
2017年大学入試総括(主に数学)
こんにちは。管理人のpencilです。
今年の入試も終わり、いよいよ春が訪れようとしています。
本日は完全なる外野(笑)から、2017年の大学入試の理系科目、主に数学科目について概観を勝手に述べてみたいと思います。
東北大学2017年後期理系第5問
今日は東北大学2017年理系後期第5問を見ていきます。これは整数問題というより完全に組み合わせの数え上げの問題ですが・・・。 “東北大学2017年後期理系第5問” の続きを読む
山梨大学2017年(医)後期第6問
今年の山梨大学医学部後期の数学には二項係数の和に関する問題が出ていましたが、今日はそちらではなく第6問の方をご紹介します。これも手垢の付いた問題です。 “山梨大学2017年(医)後期第6問” の続きを読む