最近はアメリカ大統領選挙のゴタゴタもあり、何かとTrumpが話題ですね。・・・というわけで今回は北大の前期試験からトランプが題材の確率の問題を扱ってみます(笑)。
2015Cmが偶数になる最小のm(東京大学2015年前期理系数学第5問)
2015年の二項係数に関する東大の整数問題を取り上げます。誘導が全く無い一行問題ということもあり、この年で一番話題になった整数問題と言っても良いでしょう。こういう問題はワクワクしますね!(笑)
【順像法と逆像法②】放物線の掃過領域(東京大学2015年)
前回の記事では「順像法」と「逆像法」の仕組みについて詳しく解説しました。今回はこれらの解法が実際の入試の場面でどのように使われるのかを見てみます。東京大学の問題を取り上げていますが、東大を受験しない人にも是非取り組んで欲しい良問です。
無限交代級数の和(名古屋市立大学2015年)
無限交代級数の和を求める問題です。$\log 2$ に収束するメルカトル級数や $\dfrac{\pi}{2}$ に収束するライプニッツ級数を題材にした問題は頻出なので、しっかり対策しておきたいですね!
最小シュタイナー木問題:正方形の頂点を結ぶ最短グラフ(早稲田大学2015年)
「正方形の頂点を結ぶ最短のグラフは何か」という最小シュタイナー木問題が背景にある問題です。本問は数Ⅲの知識で解答可能です。