創作整数問題gallery #26~50

創作整数問題gallery #26~50

#1~25 戻る #51~


ここでは今までに作問してきた「創作整数問題」を展覧しています。解答例や考え方はブログの方で紹介しており、問題番号をクリックorタップすると解答例が閲覧できます。


《問題#26》

$n$を$2$以上の整数とする。$\sqrt{{}_{n}\mathrm{C}^{\ }_{2}\ }$ が整数となるような$n$を$5$つ求めよ。


《問題#27》

等式$$x^3+y^3-3xy=0$$を満たすような整数$x$、$y$の組をすべて求めよ。


《問題#28》

等式$$m^2+4^n=n!$$を満たすような非負整数$m$、$n$の組をすべて求めよ。


《問題#29》

ある自然数は、$2$乗した値を$29$で割った余りと、$4$倍して$1$を加えた値を$29$で割った余りが等しいという。このような自然数をすべて求めよ。


《問題#30》

$2015^{2016}+2016^{2015}$は素数か。


《問題#31》

十進法表記における$n^3$の各位の数の和が$n$に等しくなるような正の整数$n$のうち、$3$の倍数であるものをすべて求めよ。


《問題#32》

次の覆面算を解け。$$\begin{align}\ \ \ \text{八十八}_{\ } \\
\ \ \ \text{百二十}_{\ } \\
\underline{{+)}_{\ }\ \ \ \text{千八百十}_{\ }} \\
\ \ \ \text{二千十八}_{\ } \end{align}$$ただし、各文字には$0$~$9$までの異なる整数が入るものとし、同じ文字には同じ数字が入り、異なる文字に同じ数字は入らない。また、最上位の文字に$0$が入ることはない。


《問題#33》

自然数$n$に対して、$1$から$n$までの自然数で$n$と互いに素なものの個数を$\phi (n)$とする。例えば $\phi (2)=1$、$\phi (3)=2$、$\phi (8)=4$ である。このとき以下の問に答えよ。

(1)関数$\phi (n)$が乗法的であることを利用して、$\phi (1200)$の値を求めよ。ここで関数$\phi (n)$が乗法的であるとは、$\phi (1)=1$ であり、かつ、互いに素な自然数$m$、$n$について$$\phi (mn)=\phi (m) \phi (n)$$がつねに成り立つことをいう。

(2)$n \geqq 3$ のとき、$\phi (n)$は任意の自然数$n$に対して偶数値をとることを示せ。


《問題#34》

任意の正の整数$n$に対して、各位の数字が$1$または$2$のみからなる正の整数であり$2^n$で割り切れるものが存在することを示せ。


《問題#35》

$0$以上$1$以下の既約分数を以下の手順で並べる。

まず分母が$1$となるような既約分数を大小順に並べる。分母が$2$となるような既約分数を大小順に並ぶように列に加える。さらに分母が$3$となるような既約分数を大小順に並ぶように列に加える。・・・これを続けていき、最後に分母が自然数$n$となるような既約分数を大小順に並ぶように列に加える。この数列を$F_n$とする。ただし、$\dfrac{0}{1}$および$\dfrac{1}{1}$は既約分数とみなすものとする。

例えば、$F_1$は$$\dfrac{0}{1}\ \ \dfrac{1}{1}$$となり、$F_3$は$$\dfrac{0}{1}\ \ \dfrac{1}{3}\ \ \dfrac{1}{2}\ \ \dfrac{2}{3}\ \ \dfrac{1}{1}$$となる。数列$F_n$の項数を$f^{\sharp}_n$とするとき以下の問いに答えよ。

(1)$n \geqq 2$ のとき、$f^{\sharp}_n$は奇数であることを示せ。

(2)数列$F_n$の総和が$\dfrac{f^{\sharp}_n}{2}$であることを示せ。


《問題#36》

3次方程式$$2x^3-mx^2-(4m+1)x-12=0$$が整数解をもつような整数$m$をすべて求めよ。


《問題#37》

複素数 $\sqrt[3]{2+\sqrt{-121}}+\sqrt[3]{2-\sqrt{-121}}$ が整数値をとるとき、その整数値を求めよ。


《問題#38》

$2018^{90}+2018^{60}+2018^{30}+1$ は$5$で最大何回割り切れるか。


《問題#39》

整数$n$の方程式$$\left[\left[\left[\left[\dfrac{n^2}{2}+n\right] +\dfrac{n^2}{2}+n\right] +\dfrac{n^2}{2}+n\right] +\dfrac{n^2}{2}+n\right] =4$$を解け。ただし、$[x]$は実数$x$を超えない最大の整数を表すものとする。


《問題#40》

関数$$f(n)=\dfrac{13}{6}n^3-\dfrac{19}{2}n^2+\dfrac{55}{3}n-8$$が$40$の倍数となるような$2018$以下の正の整数$n$の個数を求めよ。


《問題#41》

整数$x$、$y$に対して、連立方程式$$\begin{cases}y = 3x^3 + 9x^2 + 9x + 2 \\ x = 3y^3 + 9y^2 + 9y + 2\end{cases}$$の解をすべて求めよ。


《問題#42》

自然数$k$、$n$を用いて $\sqrt{\smash[b]{n^k+1}}+\sqrt{\smash[b]{n^k-1}}$ と表せるような有理数は存在しないことを示せ。


《問題#43》

$A=2019^{2019}+1$ とするとき、$A^7+2$ と $A^2+2$ の最大公約数を求めよ。


《問題#44》

$\displaystyle \sum^{n}_{k=1}k^p=S_p(n)$ と表すとき、$\dfrac{S_5(n)}{S_3(n)}$が平方数となるような正の整数$n$は無数に存在することを示せ。ここで平方数とは、ある整数の二乗になる整数をいうものとする。


《問題#45》

(1)等式 $a^2+b^2+c^2=d^2$ を満たす素数$a$、$b$、$c$、$d$は存在しないことを示せ。

(2)等式 $a^2+b^2+c^2=2d^2$ を満たす素数$a$、$b$、$c$、$d$は存在しないことを示せ。


《問題#46》

ある整数$N$が整数$k$の倍数であるかどうかを簡便に判別する数学的な方法は「$k$の倍数判定法」と呼ばれる。例えば、$3$の倍数判定法として、「整数$N$の各位の数の総和が$3$の倍数ならば$N$は$3$の倍数である」というものが知られている。

以上のことを踏まえて$37$の倍数判定法を導いてみよう。

(1)$n$を正の整数とするとき、$1000^n$を$37$で割った余りを求めよ。

(2)(1)の結果を利用して$37$の倍数判定法を提案せよ。また、それを用いて $N=486652173126598$ が$37$の倍数かどうかを判定せよ。


《問題#47》

$\displaystyle \sum^{1111}_{k=1} {1111}^{k}$を$11111$で割ったときの余りを求めよ。


《問題#48》

$48$進法における$5^n$の下2桁が$01$となるような最小の自然数$n$を求めよ。


《問題#49》

$\displaystyle \sum^{n}_{k=1} \dfrac{1}{k}$ は$2$以上の任意の整数$n$に対して整数にならないことを示せ。


《問題#50》

方程式 $a^2 b=a^3+2b^2$ を満たす整数の組$(a,\,b)$をすべて求めよ。



#1~25 戻る #51~