千葉大学2017年先進科学Ⅰ第5問

多項式の剰余の問題です。modの力で解決しましょう。 “千葉大学2017年先進科学Ⅰ第5問” の続きを読む

創作整数問題#5解法&創作整数問題#6


こんにちは、pencilです。世の中には「マスターデーモン」というおどろおどろしい名の付く問題(1990年IMO中国大会(北京)の第3問)が存在し、数学愛好家や数オリ関係者の間で知名度が高い(?)問題です。前回の問題は若干その問題に似ていますが、素数という条件が強い制約になっており比較的簡単に解くことができます。

“創作整数問題#5解法&創作整数問題#6” の続きを読む

創作整数問題#4解法&創作整数問題#5

こんにちはpencilです。行く1月、逃げる2月、去る3月とは言いますが、今年の3月も残すところ1週間程となってしまいましたね。さて、前回の問題#4は数列の余りの周期性に気付くことができれば易問だったと思います。問題#5は(一応)ディオファントス方程式の問題にしてみました。楽しいですよ~(笑)

“創作整数問題#4解法&創作整数問題#5” の続きを読む

微分積分学の歴史

こんにちは。pencilです。今日は微分積分学の歴史についてご紹介します。

微分積分を指す「ビセキ」という言葉は、高校生以上の年齢の方には随分と馴染み深い言葉でしょう。この「ビセキ」の概念を高校生が学べるようになるまでに費やされた先人の苦労を忍び、それが如何にスゴイことなのかを理解するため、微分積分学の歴史的経緯について簡単に振り返ってみましょう。 “微分積分学の歴史” の続きを読む

創作整数問題#3解法&創作整数問題#4

こんにちはpencilです。前回の問題#3は解けましたか?問題を見ていない人は先に創作整数問題#3をご確認ください。

“創作整数問題#3解法&創作整数問題#4” の続きを読む

東北大学2017年後期理系第5問

今日は東北大学2017年理系後期第5問を見ていきます。これは整数問題というより完全に組み合わせの数え上げの問題ですが・・・。 “東北大学2017年後期理系第5問” の続きを読む

山梨大学2017年(医)後期第6問

今年の山梨大学医学部後期の数学には二項係数の和に関する問題が出ていましたが、今日はそちらではなく第6問の方をご紹介します。これも手垢の付いた問題です。 “山梨大学2017年(医)後期第6問” の続きを読む

九州大学2017年後期理系第5問(フィボナッチ数列と自然数の集合)

昨年は複素数の極形式と絡めた整数問題が出題されていましたが、今年はフィボナッチ数列による記数法の問題が出題されました。「任意の正の整数は連続しないフィボナッチ数の和で一意に表すことができる。」というZeckendorfの定理が知られており、このような表し方はZeckendorf表示(「ツェッケンドルフ」や「ゼッケンドルフ」など、表記揺れがあります)と呼ばれており、たまに数学コンテストなどで取り上げられることがあります。本問は一意性に言及しない場合の出題です。 “九州大学2017年後期理系第5問(フィボナッチ数列と自然数の集合)” の続きを読む

一橋大学2017年後期第4問

後期第1問目は一橋大学の整数問題です。問題はまたもTwitterから拾わせて頂きました。

“一橋大学2017年後期第4問” の続きを読む