剰余の定理は整式同士の除算において活躍する重要な定理です。今回は剰余の定理の上手い使い方について複数の例題で確認していきます。
【整式の割り算】組立除法の極意
今回は整式同士で割り算を効率的に計算する方法である「組立除法」(くみたてじょほう) について動画付きで解説します。整式の除算が苦手な人は必見です!
【順像法と逆像法⑤】通過領域問題の解法選択の指針
「順像法と逆像法」の解説シリーズも遂に最終回です。前回までは問題別に、方針の立て方から解答の方法、モノの見方などを色々と解説してきました。今回はこれまでの知識を踏まえ、実際に通過領域を求める問題に遭遇した際に、どの解法を選ぶのが適切なのかについて考察してみます。
【順像法と逆像法④】線分の掃過領域(日本医科大学2016年)
「順像法と逆像法」の解説記事第4弾です。前回同様に今回も線分が通過する領域を扱いますが、今回は場合分けがやや面倒なタイプの問題とその処理方法を紹介します!
【順像法と逆像法③】線分の掃過領域(東京大学2014年)
「順像法と逆像法」の第3弾です。今回は「線分」の掃過領域を扱います。前回に引き続き東京大学の問題を引っ張ってきていますが、こちらも良問なので志望大学に関わらず是非解いてみて下さい!
【順像法と逆像法②】放物線の掃過領域(東京大学2015年)
前回の記事では「順像法」と「逆像法」の仕組みについて詳しく解説しました。今回はこれらの解法が実際の入試の場面でどのように使われるのかを見てみます。東京大学の問題を取り上げていますが、東大を受験しない人にも是非取り組んで欲しい良問です。
【順像法と逆像法①】通過領域問題の攻略法
図形の通過領域を求める方法である「順像法」と「逆像法」は、軌跡・領域の単元で重要となる考え方です。今回はパラメータ表示された直線を例に、2つの手法の違いについて視覚的に詳しく解説します! さらに、包絡線を用いた領域の求め方も併せてご紹介します!
無限交代級数の和(名古屋市立大学2015年)
無限交代級数の和を求める問題です。$\log 2$ に収束するメルカトル級数や $\dfrac{\pi}{2}$ に収束するライプニッツ級数を題材にした問題は頻出なので、しっかり対策しておきたいですね!
場合分けのある積分方程式の良問(東北大学2007年)
積分方程式の基礎的な問題ですが、被積分関数に絶対値が付いています。このパターンでは場合分けが発生するので注意が必要です。
四角錐の展開図の切り出し(名古屋市立大学2014年)
正方形から展開図を切り出した四角錐の体積の最大値を求める問題です。